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Blast-wave propagation in a spray 

By T. H. PIERCE 
Department of Mechanical and Aerospace Engineering, 

North Carolina State University, Raleigh? 

(Received 20 July 1977) 

A first-order analysis is presented for the propagation of a blast wave through a dilute 
spray of non-reactive liquid droplets that are suspended in a non-reactive gas-phase 
carrier. The analysis permits straightforward computation of decay rates and infernal 
wave structure for wave strengths in the approximate Mach number range 4 < Ma < 15, 
and loading factors (mass of spray per unit mass of carrier) less than about 0.4. The 
droplets must be sufficiently small to completely change phase in a distance behind 
the shock that is at all times negligible compared with the wave radius. Representative 
calculations, are presented and discussed. These show more rapid decay rates and 
higher pressures, densities, and particle velocities in two-phase blast waves when 
compaxed against equivalent gas-phase blast waves. A simplification of the analysis 
for the regime of higher waveMach numbers (strong waves) is also given, which for that 
case allows direct algebraic calculation of early wave characteristics. 

1. Introduction 
If the thermal energy content of a relatively small region within a larger volume of 

non-reactive gas is increased slowly by external means, the result is an essentially 
quiescent spreading of this thermal energy throughout the gas. On the other hand, if 
the rate of external energy addition is so fast as to overwhelm the combined rates of 
thermal conduction and radiation, a ‘blast wave ’ results. In  this latter case as energy 
is added it initially accumulates within the small region (‘explosion centre’) so that 
the pressure and temperature there are increased. The resulting unbalanced pressure 
gradient between the explosion centre and neighbouring layers of gas produces a 
finite-strength compression wave that propagates away from the centre. The shock 
wave that is ultimately developed accelerates gas particles in the same direction. 
However, for symmetrical geometries, the gas particle velocity at the centre itself must 
be zero, and therefore an expansion wave forms in the gas between the shock and the 
explosion centre. This expansion wave continuously interacts with the shock, so that 
after the external energy deposition has ceased the shock steadily diminishes to a 
Mach wave. 

The simplest analytic model of a gas-phase blast wave treats the explosion centre 
as a point, line, or plane (in spherical, cylindrical, or planar geometries). The gas is 
taken to be in a uniform thermodynamic state (initially) and to be thermally and 
calorically perfect and chemically inert. All of the externally added energy is assumed 
to be deposited in zero time, and the subsequent flow is analysed only for the period 
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during which the shock is very strong (pressure increase across the shock is large). 
A description of this model is given for example by Sedov (1959). 

Refinements of this model have included consideration of the latter stages of wave 
decay (weak blast wave), discussed for example by Korobeinikov (1971) and Sakurai 
( 1965); the effects of non-instantaneous energy deposition, described by Woolfolk & 
Ablow (1974), Dabora (1972), and others; propagation through an initial atmosphere 
having non-uniform thermodynamic state, given by Treve & Manley (1972); and so 
forth. Recent studies have explored blast-wave propagation in reactive gas mixtures, 
in connexion with the direct initiation of gas-phase detonations, for example Bach, 
Knystautas & Lee (1971). 

The present paper deals with the fist-order characteristics of blast-wave propaga- 
tion through a medium comprising non-reactive liquid droplets that are suspended 
in a non-reactive gaseous ‘carrier’. The initial energy deposition is assumed to be 
instantaneous, into an explosion centre of vanishing radial size. A principal assumption 
requires that the droplets be completely broken up and vaporized in a distance that is 
small compared with the blast-wave radius at any instant. This assumption im- 
mediately constrains the maximum allowable droplet size, or the maximum and 
minimum wave strengths that can be accommodated by this development. This and 
other key assumptions will be discussed in detail in 5 5 .  

2. Analysis of shock discontinuity 
The fluid characteristics just downstream of the shock serve as boundary conditions 

for the flow within the blast wave. In  the present context the ‘shock’ includes the 
droplet breakup and vaporization zone. This is illustrated in figure 1. It is necessary 
to determine conditions at point 3 in terms of those at point 1. 

For a stationary control volume connecting points 1 and 3, and with the frame of 
reference fixed to the shock, steady-state mass, momentum and energy conservation 

(1) are, respectively, 

(2) 

(3) 

Here the subscripts s and c refer to the species that is initially in condensed form, and 
the carrier; P ,  u, e and m designate pressure, velocity, internal energy, and mass flow 
rate; C3 denotes the shock-relative velocity at point 3 ;  and A is an arbitrary flow cross- 
sectional area. Gas/vapour mixture characteristics at  point 3 are represented by 
P,, a3, m3, etc. 

Assuming that the droplets themselves exert negligible pressure, then P,, = 0 and 
so P, = P,,. If the initial carrier pressure is not large, the values of internal energy and 
enthalpy of the liquid will be nearly equal; i.e. e,, h,,. Moreover, at  low pressure the 
initial enthalpy of the liquid will very nearly equal the saturated liquid value at  the 
initial temperature, TI. 

It is further assumed that the initially condensed species behaves as a thermally 
and calorically (constant specific heate) perfect gas when in the vapour phase, as 
does the carrier, and that the droplets and carrier possess the same initial temperature. 

m, + mc = m3, 

Pl A + m,ul + m , ~ ,  = P3 A + m3a3, 
kc(ecl + u:/2) + h,(e,, + ~5’2) + PI Au, 

= h,.(eC3 + Q;/2) + k S ( e s 3  + a y 2 )  + P3Aii3. 
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FIGURE 1. Schematic of blast wave shock in ground-fixed co-ordinates. 

Then, if the gas/vapour mixture at point 3 behaves asa Daltongas so that P3 = pC3 + PX3, 
the conservation equations can be written as 

and 

In  these equations, p designates density, w, is the ‘loading factor’? defined by 

w, = ms/mc, 

a is the speed of sound, L, is the heat of vaporization of the liquid at initial tempera- 
ture T,, C,, is the vapour-phase constant-pressure specific heat of the initially-condensed 
species, and 4 = 1 + w,. The sound speed at point 1 is computed from 

where yc is the ratio of specific heats for the carrier. The effect on a, of the presence 
of the droplets is ignored. The speed of sound in the mixture at point 3 is simply 
a: = y3 P3/p3 where y3 is the specific heats ratio at point 3. The value of y3 is easily 
shown to be 

1 +w$, 

7 3  = 1 +rw,c,)’ 
t Note that the loading factor simply represents the mass of liquid per unit mass of carrier in 

any fixed volume. Downstream of the shock, with the initially condensed species in the vapour 
phase, the loading factor is identical with what is commonly called the ‘humidity ratio’. The 
volume occupied by the droplets is neglected in this analysis. 
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where f l p  = C,,/C,,, 7 = yc/y8 and y8 is the vapour-phase value for the initially 
condensed species. Conservation of mass by species can be used to show that the 
fractional composition, and therefore the loading factor, is the same at points 1 and 3. 

A solution to (4)-(8) is 
= $ (pcl/p3) 

in which 

and E 3 Ll/a;. 

This form for the shock solution is too complex to be used tractably in conjunction 
with the blast-wave equations. For this reason it is now assumed that the radicand 
in (9) can be replaced by (s)2. 
an approximation that formally requires y 3  
(a dilute spray or strong shock). Equations (7)-(9) simplify to 

yc and l 2 y 3 ~ u S e ( y ; - -  l ) / ( [ - - ~ ~ ) ~ l  g 1 

3. Blast-wave analysis 

considered to be inviscid so that the Euler equations can be used. These are 
The unsteady gas motion between the shock front and the centre of explosion ie 

and 
(momentum). (14) 

Radius r is measured from the explosion centre along a streamline. The value of a is 
0, 1, or 2 for planar, cylindrical, and spherical geometries, respectively. The energy 
equation is not included since it will be replaced by a forthcoming assumption. 

The ' blast-wave radius ' R is the distance between the shock and explosion centre. 
It is of course a function of time t ,  described by 

dR(t) /dt  = Ul( t ) .  
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The boundary conditions are obtained directly from (lo)-( 12). That is, 

w, t )  = P3(t), u(R, t )  = u,(t), p m  t )  = P3(t) .  

The relation between absolute (ground-relative) velocity u, and shock-relative velocity 
42, is simply u, = u1 - 4,. The initial conditions are R = 0 and M, -+ 00 at t = 0. These 
re0ect the instantaneous deposition of a finite quantity of energy into zero volume, 
producing an infinite pressure rise there, in the first moment. 

The solution to this problem which follows parallels the approximate analysis given 
by Sakurai (1965) for gas-phase blast waves. Accordingly, new dependent variables 
f, g, and h, and new independent variables x and y are introduced. These are 

f(z, 9 )  ZZ u/ul, g(z, y )  yp/pl, h(z, y )  P/PClt 

and x = r /R,  y = M F ~ .  

In this way, with the further definition 

the differential equations (13) and (14) become, respectively, 

while the boundary conditions transform to 

f(L Y 1 = 1 - az{(PY/a, 4) + 11, (17) 

g(1,y) = yc4(1-az)+y{l -(YcP%I"1)), (18) 

and h(LY)  = "142/(P"zY +a1a24). (19) 

It is now assumed that f ( X , Y )  = f o ( Y ) G  (20) 

that is, at any time t the velocity is taken to be a linear function of radius (whose value 
is us at the shock, r = R, and zero a t  the explosion centre, r = 0). This assumption 
circumvents the need for the Euler energy equation. 

The function f o ( y )  can immediately be obtained by applying the boundary con- 
dition (17), to the value off at x = 1. This gives. 

f o  = 1 - %{(PY/alSJ) + 11- (21) 

Equation (15) can then be readily integrated if the values of Ay ahlay are assumed 
to be small by comparison with (f - z) ah/ax for all (2, y ) .  If this assumption is adopted, 
then after substituting (20) into (15) and integrating, 

where 
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The function ho(y) is obtained by applying (19) ,  the boundary condition at x = 1, to 
(22) .  By this procedure it is found that 

ho = $ 5 / [ ( P z Y / . 1 4 )  + % I -  (24)  

Now (16) can be integrated over x, after substituting (20)  and (22) .  The constant of 
integration is evaluated by invoking the boundary condition, (18). The result is 

9 = A ( Z ~ + ~  - 1) + 90 ,  (25)  

where 

and 90 = Yc$5(l-az)+Y(l-(YcYclU"2/"1)). (27) 

Simple algebraic forms for the distributions in P ,  p, and u within the wave are thus 
obtained. However, values for g cannot be determined nor can M, = M,(R) be found 
until the function h(y) is known. 

The additional physical equation that is required in order to evaluate hfy) is supplied 
by integral energy conservation. It is argued that, at any time t > 0 (when the blast- 
wave radius is R ) ,  the total energy content within the region 0 < r < R must exceed 
that contained within the same region for t < 0 by an amount that is equal to the 
energy deposited a t  the explosion centre at t = 0. That is, the shock represents the only 
mechanism which carries energy away from the centre. Hence, 

where E, is defined as: deposited energy per unit area, for a = 0 (planar); deposited 
energy per unit length divided by 277, for a = 1 (cylindrical); and deposited energy 
divided by 477, for a = 2 (spherical). 

Equation (28)  is simplified by using the same assumptions that were employed in 
reducing the jump equations for the shock-wave analysis in $ 2  (prior to solving). 
Additionally, integral conservation of mass by species for the region 0 < T < R,  
between t < 0 and any t > 0, is needed; i.e. 

and 
(ps-psl)r"dr = 0. I: 

After considerable rearrangement (28)  then becomes 

where e = i - - y c ( Y C - i ) ~ , ~ .  

Ro = (Ea/Pl)l/(a+l), 

Y(R0/ma+l = J(Y) - [OY/(Yc- 1 )  (a + 111, 

If the dimensionless variables f, g, h, x, y are introduced into (29)  along with the 

(30)  

(311 

characteristic radius 

then 

in which 
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Substituting (ZO) ,  (22) and (25) into (32) then leads to 

J ( Y )  = S ( Y )  + n Q ( Y h  
where 

(33) 

and 

The required function h ( y )  is obtained by solving (33), giving 

A = ( J  - S) /Q,  (34) 

which can be evaluated once J ( y )  is known. 

R ( y )  is not yet known. However, if (31) is differentiated with respect to y, 
The function J ( y )  cannot unfortunately be determined directly from (3  l), since 

This equation can be subsequently re-integrated numerically beginning from y = 0 
( t  = 0 ) ,  to yield J = J ( y ) .  Once J ( y )  is known, h ( y )  is calculated from (34), and then 
R ( y )  can be determined from (31); i.e. 

Thus, the principal arithmetic task required by this approximate formulation is 
the integration of (35). For that purpose, initial values for A and J are required. The 
initial conditions are y = 0 at R = 0, and, since J (0 )  is necessarily finite, solving (35) 
for h and setting y = 0 shows that h(0) = a + 1.  

Although the value of J ( 0 )  can then be computed directly from (33), the value of 
the derivative, dJ /dy  at y = 0, is indeterminate. This can be clearly seen from (36). 
Application of L'Hospital's Rule to the first right-hand-side term in (35) leads to 

8 

Alternatively, this derivative may be found by differentiating (33), giving 

where 

(37) 

Hence, eliminating (dh/dy),,, between (37) and (38), and making use of (33), we have 
finally 

The slopes (dS/dy),,, and (dQ/dy),,o can be obtained numerically from the definition6 
of X and &; S(0) and Q(0) can be computed directly. 
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4. Simplification for strong waves 
A blast wave is said to be ' strong ' when M,+ 00, R -+ 0, strictly, SO that y = ML2 + 0. 

For many purposes it is satisfactory when dealing with gas-phase blast waves to extend 
the strong wave assumption to Mach numbers as low as five or six. In  this regime it is 
not necessary to integrate (35). Rather, J A J(O), readily calculated from (33) with 
h & h(0) = a+ 1, can be used. Thus, since J(0)  and 8 are finite, (36) becomes 

or 

This simple closed-form equation suggests a direct comparison of the relative decay 
rates of strong gas-phase (w, = 0) and two-phase (w, > 0) blast waves. If both waves 
occur with the same values of E, and P,, then, at equal wave radii, the ratio of their 
shock front strengths will be 

where the subscripts T and G refer to values for the two-phase and gas-phase quantities, 
and v is the 'attenuation ratio'. 

5. Results and discussion 
Although a full parametric study has not been carried out, calculations were 

executed for two representative groups of parameters. The first group is characteristic 
of water droplets suspended in nitrogen gas at one atmosphere initial pressure and an 
initial temperature of 25°C. The values are cp = 1.79, 7 = 1.05, and z = 19.5. The 
second group is characteristic of any of several hydrocarbon fuels, such as iso-octane, 
kerosene, gasoline, n-decane, and diethylcyclohexane, the droplets again being 
suspended in nitrogen gas at one atmosphere and 25 "C. In  this case the approximate 
values are Cp = 1.6,T = 1.35, and z = 2.5. 

The qualitative nature of the results support intuition. In  a two-phase blast wave, 
some of the deposited energy must be expended in order to overcome the heat of 
vaporization of the liquid droplets. The remaining energy is shared within the wave by 
both species. These two effectsresult in accelerated wave attenuation rates. At the same 
time, the densities and pressures within the two-phase blast wave are increased by the 
liquid mass loading. 

Figures 2-4 compare the decay rates of two-phase planar, cylindrical, and spherical 
blast waves for the fuels in nitrogen. The equivalent decay curves for a cylindrical 
blast wave in waterlnitrogen are shown on figure 5. 

The magnitude of the effect of the presence of droplets on the blast wave attenuation 
rate is significant. For example, the planar blast wave of figure 2 decays to M, = 4 
at a dimensionless radius of 3-75 x 10-2 when no droplets are present (w, = 0). How- 
ever, with a liquid loading factor of w, = 0.4, the wave decays to Ms = 4 at 
RIR, = 1-48 x which represents about 40 yo of the distance traversed by the 
gas-phase wave. 
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FIGURE 2. Decay curves, planar wave (a = 0); 8, = 1.6,y = 1.35, = 2.5 
(fuels), nitrogen carrier, TI = 25 "C. 

t I t I I I 1 I 
I 2 3 4 

(RIR,) x 10' 

FIGURE 3. Decay curves, cylindrical wave (a = 1); 8, = 1.6,r = 1.35, 
= 2.5 (fuels), nitrogen carrier, T, = 25 "C. 

Typical pressure, density, and absolute velocity profiles are shown on figure 6-8. 
The shapes of the two-phase profiles are similar to their gas-phase counterparts. How- 
ever, owing to mass loading by the droplets, the pressures in two-phase bla,st waves are 
higher than in gas-phase waves. The difference is very significant for the case of 
w, = 0.4 illustrated in figure 6. For the same conditions, the density at the front of the 
two-phase blast wave shown on figure 7 is 2-3 times the gas-phase value, although it 
drops off more rapidly toward the centre of explosion. Absolute particle velocities are 
also higher in a two-phase wave, as can be seen on figure 8. It will be recalled that 
velocity profiles are linear by assumption. 
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FIGURE 4. Decay curves, spherical wave (a = 2); 8, = 1.6, 7 = 1.35, 
z = 2.5 (fuels), nitrogen carrier, T, = 25 "C. 
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FIQURE 5. Decay curves, cylindrical wave (a = 1);  8, = 1-79,7 = 1.05, 
z = 19.5, (water), nitrogen carrier, T, = 25 "C. 

From these results it is not immediately clear whether the impulse imparted by the 
blast wave to the ground, or to a suspended body, will be larger or smaller when drop- 
lets are present initially. Although the wave attenuates more rapidly than it would 
without droplets present, it occurs with what can be substantially higher static and 
dynamic pressures throughout the shortened decay period. 

Attentuation ratios for strong waves have been calculated and are presented as 
functions of loading factor on figure 9. For a given set of parameters the values were 
found to be very nearly equal in all geometries; only single average curve8 have there- 
fore been given. Attenuation ratios should prove useful as a first-order means to 
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FIGURE 6. Pressure profiles at M ,  = 5 ;  a = 1, = 1-6, ;j7 = 1.35, L = 2.5 

assess the effects of a spray on blast-wave decay rates, since these ratios can be quickly 
calculated. 

The analysis of two-phase blast waves as presented in this paper was developed on 
the fundamental assumption that a t  any instant, the blast-wave radius is much larger 
than the distance behind the shock that is required for the complete change of phase 
of the liquid droplets. For this reason the shock and phase-change region have together 
been treated as a single discontinuity. 

The interaction of a shock wave with a single non-reactive liquid droplet suspended 
in a gas has been described in some detail by a number of authors. After a shock wave 
has passed over the initially stationary droplet, finite droplet acceleration gives rise to 
a period during which a relative velocity exists between it and the shocked gas. Even 
for shocks of moderate strength, this relative velocity enormously increases the 
droplet disintegration rate. 

Using results given by Ranger & Nicholls (1972), the approximate distance traversed 
by the shock during the disintegration period is 

whereas the distance that the droplet itself is displaced in the same time interval is 

xD 6 2 5 0 ,  (43) 

where D is the initial droplet diameter, pl is the condensed-phase liquid density, and 
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FIGURE 7. Density prOfi18S at M ,  = 6; a = 1, = 1-6,y = 1.35, z = 2.6 
(fuels), nitrogen carrier, TI = 25 "C. 

point 2 is located just behind the shock itself, as shown on figure 1.  The length of the 
phase-change region, xB, is then approximately 

X B  = XH-XD. (44) 

Now, it is required by the present analysis that x B / R  < 6, where 6+0. Using 
(42)-(44) and simplifying, this condition can be written as 

where R = R/R, is the dimensionless wave radius. Since the rise in density is finite 
across a simple shock and since R+ 0 as Ma+ oc), it is clear that the maximum allowable 
drop size is always zero a t  R = 0. The maximum allowable drop size is also zero as 
M,+ 1 since in that limit no change of phase occurs at all. 

Thus the primary assumption for the simplified structure of a two-phase blast wave 
fails, except for infinitesimal drop sizes, at both the very strong and very weak limits. 
However, for intermediate-strength waves, realistic droplet sizes can be accommo- 
dated. For example, in spherical geometry (a = 2)) with P1 = 1 atm, Tl = 25 "C, and 
E, = 106J (the equivalent of 200 g of TNT), the maximum drop size for one of the fuels 



Blast-wave propagation in a spray 653 

0.2 0.6 I .0 
r l  R 

FIGURE 8. Particle velocity profiles at M ,  = 5; a = 1, cp = 1.6,y = 1-35, z = 2-5 
(fuels), nitrogen carrier, TI = 25 "C. 
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FIGURE 9. Attenuation ratio vs. loading factor. Upper curve, op = 1.79, 7 = 1-06, E = 10.6 
(water); lower curve, 8, = 1.6,y = 1.35, = 2.5 (fuels); both curves, nitrogen carrier, T, = 26 "c. 
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FIGURE 10. Maximum dimensionless drop size vus. loading factor at M ,  = 10; 
cp = 1.6, 7 = 1.35, = 2.5 (fuels), nitrogen carrier, T I  = 25 “C. 

in nitrogen at  M, = 10 is about 520,um, using S = 0.05. This maximum drop diameter 
increases with decreasing Mach number until M, N 2, then again decreases to zero as 
M8+ 1.  Its largest value is about one order of magnitude greater than that at  M, = 10. 
The maximum allowable drop size also increases with increasing deposited energy. 
Values of (D/R,,S)max, calculated from (45), are plotted on figure 10. 

A second important assumption in this analysis is that the ‘approximate’ shock 
relations, (10)-(12), can be used in place of the ‘exact’ relations, (7)-(9). The largest 
error between these two sets of equations occurs in the shock-relative velocity ratio, 
a3/u1. This error is plotted on figure 11 for w, = 0.4. As can be observed, the error is 
reasonably small for the fuels group to Mach numbers as low as M, = 2. The error with 
water droplets is however considerably higher and is probably excessive for Mach 
numbers less than four for the case shown. Since these errors decrease to zero at all 
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Mach numbers as a,-+ 0, the maximum tolerable error in a particular application will 
dictate either the minimum wave strength or the maximum loading factor for which 
this assumption can be retained. 

The first of the two Sakurai assumptions that have been adopted in this paper is 
f cc x. Particle velocity profiles in gas-phase blast waves are in fact reasonably linear 
at  high Mach numbers and this generally remains an acceptable approximation for 
Mach numbers as low &s about three. However, this assumption clearly excludes 
any realistic description of the final stages of wave decay where the significant feature 
is a backflow of gas towards the explosion centre. The 'linear particle velocity' 
assumption is extended to two-phase blast waves without further justification. 

The second Sakurai assumption, that h y  ahlay < (f - x) ahlax, is somewhat more 
tenuous. That assumption is needed in order to obtain a simple form for h(x, y) = P/Pcl 
through an integration of (15). When this is done (22) results, 

h = ho(y) x ~ .  
If hy ahlay is retained in (15), rearrangement of that equation gives 

where f = f o x  has been used. Multiplying by dx and integrating leads to 

where 

The form h = hoxm will thus be a satisfactory representation of the density distribu- 
tion within the blast wave if r = 1.  

Approximate values of I' were calculated using h = hOxm and performing the indi- 
cated integration. This results in r = XI, 

where 

and c = a2p/a1$. 

The values of r calcuIated in this way are in fact unity at x = 1 and at y = 0. At other 
(x, y) the departure from unity is typically significant. The greatest errors occur for 
x < 0.7, a regime in which (except for low Mach numbers not presently treated) the 
values of h are very small. Most of the important variation in density occurs for 
x > 0.7 as can be seen on figure 7. It is not likely that imprecision in density values 
for x < 0.7 would seriously compromise the remainder of the solution. 

characteristically vary between 
0.85 and 1.16. Hence, except for strong waves, it appears that neglecting Ayahlay 
in (15) can introduce non-trivial error, particularly in the density and temperature 
profiles at lower Mach numbers. While this problem is certainly of some concern, it is 
encouraging to note that for the gas-phase blast waves analysed with this approxima- 
tion by Sakurai (1965)) the predicted wave decay rates agree quite favourably with 
more accurate solutions. 

Unfortunately, even for 0.7 < x < 1, values of 
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FIQURE 11. Error in d,/u, between ' exact ' and ' approximats ' 
shock discontinuity solutions, w, = 0.4. 

6.  Conclusions 
A n  objective in this study has been to provide a physically reasonable description 

of a two-phase blast wave cast in an accessible analytic format. Use of the results 
requires the integration of a single ordinary differential equation, (35). If the strong- 
wave approximation is used, no integration a t  all is required. 

However, this simplified formulation cannot acceptably describe the blast-wave 
characteristics either at very high Mach numbers (R-t 0) or at very low Mach numbers 
(R-+m). In  the earliest stages of decay, the droplet breakup and evaporation zone 
width is large compared with the wave radius. It is likely that during this period the 
drops have little effect on the wave which therefore exhibits gas-phase blast-wave 
behaviour. As the wave expands further, the breakup width first becomes comparable 
to, and then much smaller than the wave radius (for sufficiently large energy deposition 
or sufficiently small droplets). Since the integration of (35) begins at y = 0, errors in 
that vicinity will persist throughout the remaining solution. Further study will be 
required to reveal the extent of this effect. 

When the wave has decayed to low Mach numbers the droplet breakup distance again 
becomes comparable to the wave radius. At the same time the approximate shock 
solutions, (lo)-( 12), and the Sakurai assumptions, f cc z and ay ahlay < (f-2) ah/&, 
all become unacceptably inaccurate. The approximate shock solutions also become 
progressively less accurate with increasing loading factor. 
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In  view of all these observations it would appear that the present analytical treat- 
ment can be implemented with reasonable accuracy for wave strengths falling typically 
in the range 4 < M, < 15, loading factors less than w, A 0.4, and values of D/R,,6 less 
than those given on figure 10. This recommendation should be regarded as applicable 
only to spraylcarrier combinations with values of yc, c,, 7, and 5 near those of the 
representative calculations. Above M, = 15 it is likely that the conventional, strong 
gas-phase blast-wave solution will yield the better approximation. The upper limit on 
M, depends on drop size and can be increased with reduced values of D/R,,S. 
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